Carbonylvanadium-Halbsandwichkomplexe: Darstellung, Struktur und ⁵¹V-NMR-Spektren von Derivaten des η^5 -C₅H₅V(CO)₄

Martin Hoch und Dieter Rehder*

Institut für Anorganische und Angewandte Chemie der Universität Hamburg, Martin-Luther-King-Platz 6, D-2000 Hamburg 13

Eingegangen am 4. März 1988

Durch Umsetzung von V(CO)6 mit Alkylcyclopentadienen Cp'H ist eine große Zahl von Halbsandwichkomplexen der Zusammensetzung Cp'V(CO)₄ I ("offene" Cp-Derivate) und III (anellierte Cp-Derivate) darstellbar. Als Nebenprodukte entstehen die Verbindungen [Cp₂V(CO)₂][V(CO)₆]. Die Reaktivität der zum Typ III führenden Cyclopentadiene nimmt erheblich zu, wenn die Umsetzungen mit Cp'Br vorgenommen werden (Cp' = Indenyl, Fluorenyl). Mit Acenaphthylen, Azulen und Guajazulen entstehen Doppel-Halbsandwichkomplexe [(Cp'H)V(CO)₄]₂, die in Lösung in verschiedenen meso-Formen vorliegen. Im Acenaphthylenkomplex kann in je einer Molekülhälfte ein CO durch PPh3 photochemisch ausgetauscht werden. Zweifach alkylierte Derivate des Typs I bilden 1,2- und 1,3-Isomere. Sofern zwei Chiralitätselemente vorliegen [Cp' = s-Bu-Indenyl, s-Bu(Me)C'_5H_3; C_5H_5- $V(CO)_3N^*N^*$, $C_5H_5V(CO)_2NN^*$] werden beide diastereomeren Enantiomerenpaare beobachtet. Drei Chiralitätszentren [s-Bu-C₅H₄V(CO)₂NN*] liefern vier Diastereomere. Eine Unterscheidung der Isomeren ist durch die ⁵¹V-NMR-Spektren möglich. Die $\delta(^{51}V)$ -Werte umspannen den Bereich von -1534 [C₅H₅V(CO)₄] bis -1118 ppm [Fluorenyl-V(CO)₄] relativ zu VOCl₃. In diesen Bereich fällt auch η^7 -C₇H₇V(CO)₃ (-1485); dagegen ist die Abschirmung in $[\eta^6$ -Toluol-V(CO)₄]⁺ mit - 1660 ppm deutlich höher als in den n⁵-Cp-Komplexen. Der durch Friedel-Crafts-Acylierung zugängliche Komplex MeC(O)C5H4V(CO)4 (16) kann zum Alkohol reduziert und in das Oxim und Phenylhydrazon übergeführt werden. Kraftkonstanten sowie die Bandenlagen für die Cp'(CO)₃(¹³CO)-Isotopomere der zum Typ III gehörenden Komplexe werden berechnet. Die Kristall- und Molekülstruktur der Komplexe C₅H₅V(CO)₄ (verfeinerte Neubestimmung) und 16 wurde durch Einkristall-Röntgenstrukturanalyse ermittelt.

 $CpV(CO)_4$ ($Cp = \eta^5 - C_5H_5$) und seine Abkömmlinge sind in der Vergangenheit nur sporadisch behandelt worden. Wenn man von früheren Arbeiten zu den schwingungsspektroskopischen Charakteristika von CpV(CO)₄ selbst¹⁾ und seiner Monosubstitutionsprodukte mit Lewisbasen^{2,3)} sowie von Untersuchungen zum photochemischen Verhalten absieht²⁻⁵, so fehlt eine systematische Bearbeitung dieser Halbsandwichkomplexe, insbesondere auch der ringderivatisierten Verbindungen $Cp'V(CO)_4$ (I) weitgehend, obwohl sie, wie unten ausgeführt werden wird, vergleichsweise problemlos zugänglich sind. Insbesondere am Ring mehrfach oder durch räumlich anspruchsvolle Gruppen substituierte Spezies sind dabei von größerem Interesse, weil sie Ausgangspunkt für eine umfangreiche Folgechemie sein können, die sich des photolytisch erzeugbaren (aber im Falle der unsubstituierten Verbindung labilen) Vorläufers Cp'V(CO)3-THF bedienen. Wir haben uns nun für diese Verbindungs-

Carbonylvanadium Halfsandwich Complexes: Preparation, Structure, and $^{51}V\text{-}NMR$ Spectra of Derivatives of $\eta^5\text{-}C_5H_5V(CO)_4$

The reactions between V(CO)₆ and alkylcyclopentadienes Cp'H yield a large number of halfsandwich complexes of the composition Cp'V(CO)₄ I ("open" Cp derivatives) and III (anellated Cp derivatives). The compounds [Cp₂V(CO)₂][V(CO)₆] are formed as by-products. The reactivity of the cyclopentadienes leading to the type III complexes drastically increases as the reactions are performed with Cp'Br (Cp = indenyl, fluorenyl). With acenaphthylene, azulene, and guaiazulene double-halfsandwich complexes $[(Cp'H)V(CO)_4]_2$ are obtained, which are present in solution in several meso forms. In the acenaphthylene complex one CO per Cp'V(CO)₄ moiety can be replaced photochemically by PPh₃. Doubly alkylated derivatives of type I form 1.2- and 1.3-isomers. The two diastereomeric pairs of enantiomers are observed in cases where there are two elements of chirality [Cp' = s-Bu-indeny], s-Bu(Me)C₅H₃; C₅H₅V(CO)₃N*N*, C₅H₅V(CO)₂NN*]. Three centres of chirality [s-BuC₅H₄V(CO)₂NN*] yield four diastereomers. The differentiation of the isomers is performed on the basis of the ⁵¹V-NMR spectra. $\delta(^{51}V)$ values span the range between -1534 [C₅H₅V(CO)₄] and -1118 ppm [Fluorenyl-V(CO)₄], relative to VOCl₃. η^7 -C₇H₇V(CO)₃ (-1485 ppm) falls within this range, while shielding is clearly higher in $[\eta^6$ -toluene-V(CO)₄]⁺ (-1660 ppm) than in the η^{5} -Cp complexes. MeC(O)C₅H₄V(CO)₄ (16), which can be obtained by Friedel-Crafts acylation, is reduced to the alcohol and converted into the oxime and phenylhydrazone. Force constants and band positions of the Cp'(CO)₃(¹³CO) isotopomers of the type III complexes have been calculated. The crystal and molecular structures of $C_5H_5V(CO)_4$ (refined determination) and 16 have been obtained from single crystal X-ray analyses.

gruppe auch in Hinblick auf ⁵¹V-NMR-spektroskopische Eigenschaften interessiert und sind der Frage nachgegangen, was die ⁵¹V-NMR-Spektroskopie in diesen vanadiumorganischen Verbindungen als analytisches Hilfsmittel zu leisten vermag, und in welcher Weise die Abschirmung am ⁵¹V-Kern durch sterische und elektronische Faktoren seitens der Substituenten am Cyclopentadienylring beeinflußt wird. In

Schema 1

VICON I. 1-15 III. 25-30 II, 16-20 (s. Tab. 6) n=1,2: IA, 21-24 (R und L s. Tab. 4)

der vorliegenden Arbeit beschreiben wir drei Gruppen von Derivaten von CpV(CO)₄ (vgl. Schema 1): einfach und mehrfach alkylierte Komplexe (I), funktionalisierte Derivate von CpV(CO)₄ (II) und 6- und 7-Ring-anellierte Cyclopentadienylderivate (III). Weiterhin werden einige im Carbonylsystem substituierte Komplexe (IA und IIIA) in die Untersuchungen einbezogen. Erste Ergebnisse hierzu wurden bereits in zwei Kurzmitteilungen vorgestellt^{6,7}.

Alkyl- und funktionalisierte Derivate von CpV(CO)₄, Darstellung und Eigenschaften

Ringderivatisierte Derivate von CpV(CO)₄, im folgenden mit Cp'V(CO)₄ (I) bezeichnet, sind in Einzelfällen bereits früher dargestellt worden, z. B. durch Umsetzung von Pentafulvenen mit V(CO)₆⁸, Hydrido-⁹⁾ und Stannylcarbonylvanadium-Komplexen¹⁰⁾, durch Umsetzung von Cp'H und Hexacarbonylvanadium (Cp' = C₅Me₅¹¹⁾), durch reduktive Carbonylierung von Cp₂V (Cp' = C₅H₄Me¹²⁾) oder auch über die direkte Derivatisierung am Cp-Ring (Cp' = Acetyl-C₅H₄¹³⁾). Für den generellen Einstieg in diese Gruppe von Halbsandwichkomplexen eignet sich nur die Reaktion zwischen V(CO)₆ und Cp'H⁶⁾, die – wie für die Umsetzung mit Methyl-cyclohexyl-cyclopentadien in Gl. (1) gezeigt – zu einem Gemisch aus Oxidations- (13) und Disproportionierungsprodukt ([Cp²V(CO)₂][V(CO)₆]) führt.

Die Reaktion läßt sich in Richtung auf die gewünschten Halbsandwichkomplexe optimieren, wenn man bei mäßigen Temperaturen (um 30 bis 40°C) arbeitet. Höhere Temperaturen führen zwar zu erhöhter Bildung der Monocyclopentadienyl-Komplexe, jedoch auch zur partiellen Pyrolyse von V(CO)₆; bei niedrigeren Temperaturen ist die Bildung der Bis(cyclopentadienyl)-Komplexe begünstigt. Unter optimierten Bedingungen betragen die Reaktionszeiten ca. 30 min, im Falle der Umsetzung mit sterisch gehinderten Cyclopentadienen mehrere Stunden. Ausbeuten liegen zwischen 40 und 80%. Die Cyclopentadiene werden in Analogie zu bekannten Verfahren¹⁴⁾ über LiCp und RBr (C_5H_5R) bzw. NaCp' (aus NaH und Cp'H; Cp' = C_5H_5R) und RBr (höhersubstituierte Cyclopentadiene) zugänglich. Die nach wäßriger Aufbereitung anfallenden Cyclopentadiene [im Falle zwei- und dreifach alkylierter Verbindungen liegen, wie die ⁵¹V-NMR-Spektren der Komplexe I bestätigen (s.u.), stets die beiden Positionsisomeren vor] müssen sogleich eingesetzt werden, da eine thermische Crackung der Dimeren (die sich vor allem im Falle niederer Alkylcyclopentadiene rasch bilden; lediglich Penta-, Hexa- und Octadecylcyclopentadien dimerisieren erst innerhalb mehrerer Wochen) mit beträchtlichen Verlusten verbunden ist.

Die Komplexe des Typs I fallen als gelbe bis rotorange Verbindungen in feinkristalliner Form, als Öle (zwei- und dreifach substituierte Komplexe) oder Wachse an $[C_5H_3-(Me)cety]V(CO)_4$: 14]. Nur die hochsubstituierten Komplexe und solche mit sterisch anspruchsvollen Substituenten am Ring haben eine dem CpV(CO)₄ vergleichbare Stabilität. In der Regel sind die Komplexe des Typs I aber recht temperatur- und lichtempfindlich. Mehrwöchige Lagerung bei Raumtemperatur führt zu ihrer Zersetzung.

In der Reaktivitätsreihe für die elektrophile Substitution am Aromaten steht CpV(CO)4 in der Nähe des Benzols und damit am eher reaktionsträgen Ende¹⁵⁾. Die Acetylierung mit Acetanhydrid/AlCl₃ zu Acetyl-C₅H₄V(CO)₄ (16) erfolgt problemlos und konnte durch ein gegenüber früheren Angaben¹³⁾ geändertes Aufarbeitungsverfahren bis zu Ausbeuten von 86% gebracht werden. 16 kann in das 2,4-Dinitrophenylhydrazon (17), das Oxim (18) und, durch Reduktion mit Li[AlH₄], in das Hydroxyethylderivat (19) übergeführt werden. In niedrigen Ausbeuten sind früher auch bereits die Methyl-acetyl- und Methyl-propionyl-Derivate dargestellt worden¹⁶⁾. Gleichfalls problemlos läßt sich mit Benzoylchlorid/AlCl₃ das Benzoylderivat 20 herstellen. Dagegen blieben alle Versuche zur Synthese des Formylderivates erfolglos, und die Umsetzung von CpV(CO)4 mit Trifluoracetanhydrid/AlCl₃ führt zu der schon früher in geringen Ausbeuten aus CpV(CO)₄ und Trifluoressigsäure¹⁷⁾ erhaltenen Verbindung CpV(O₂CCF₃)₂. In vergleichbarer Weise erhält man bei der Umsetzung mit Trichloracetylchlorid CpV(O₂CCCl₃)₂. Für Friedel-Crafts-Alkylierungen erwies sich CpV(CO)₄ als zu träge; die *n*-Butylierung gelingt nur in flüssigem HF¹⁸⁾.

Abb. 1. SCHAKAL-Zeichnungen der Moleküle CpV(CO)₄ (oben) und 16. Die Blickrichtung für die Abbildungen, welche die Numerierungsschemata enthalten, ist entlang der Achse $V - C_5H_4R$

Kristall- und Molekülstrukturen

Die Einkristall-Röntgenstrukturanalyse von 16, im folgenden der verfeinerten Struktur von $CpV(CO)_4$ gegenübergestellt [Abb. 1 und Tabellen $1-3^{19}$; die Struktur von

Tab. 1. Daten zu den Röntgenstrukturanalysen von $C_5H_5V(CO)_4$ und 16

		CsHsV(CO)4	HeC(0)CsH₄V(CO)₄ 18	
Kristallsystem		orthorhombisch	monoklin	
Raumgruppe		Pnma	P21/c	
Gitterkonstanten a (p¤j		750.1(2)	1008.9(2)	
	b (pm)	1243.5(3)	1464.0(4)	
	c lpm	1225.9(2)	778.1(2)	
	a (°)	90.00(2)	90.13(2)	
	β [°]	89 99(2)	91.85(2)	
	7 [°]	89.90(2)	90.02(2)	
Zellvolumen [pm ³]		959.55-10-6	1148.7•10-8	
Zahl der Formelei	nheiten	Z = 4	Z = 4	
Empirische Formel		CeHsO₄V	C11H705V	
Molmasse [g·mol-1	į	228.08	270.12	
Ber. Dichte [g·cm	- a]	1.579	1.562	
Linearer Absorpti koeffizient [c	ons-]	9.46	8.39	
Meßbereich		20 ≤ 55°	2∂ ≤ 60≏	
Anzahl symmetrieu hängiger Refle	nab- xe	1159	3366	
Reflexe mit F₀ ≥	40(Fo)	909	1148	
Zahl der verfeine Parameter	rten	76	171	
R-Wert		0.038	0.047	
gewichteter R-Wer	t, Rw	0.031	0.038	
$w^{-1} = \sigma^2(F_o)$		$2.9045/\sigma^{2}(F)$	2.0961/o²(F)	
Kristallabmessung	en [mm³]	0.3.0.4.0.4	0.3.0.2.0.1	

CpV(CO)₄ wurde früher, jedoch nur bis zu einem R-Wert von 0.116, beschrieben²⁰⁾], zeigt im Unterschied zu Cp-V(CO)₄ keine Fehlordnung der Cyclopentadienylringe im Kristall. Die C-C-Bindungsabstände im Cp-Ring von 16 sind praktisch gleich. Die durch die vier CO-Gruppen aufgespannte Ebene ist coplanar zur Cp-Ebene, der Vanadium-Cp-Abstand weicht nicht signifikant von den Werten ab, die in CpV(CO)₄ (191.3 pm), in Bis(η^{5} -acenaphthylen) $[V(CO)_4]_2^{7}$ (193 pm) und in einigen phosphan- und arsansubstituierten Verbindungen²¹⁾ gefunden wurden. In der cyclo-C₅-Ebene liegt auch der sp²-Kohlenstoff der Acetylgruppe; die Methylgruppe und der Sauerstoff sind aus dieser Ebene etwas herausgedreht. In CpV(CO)₄ fallen die beträchtlich verkürzten C-C-Bindungsabstände C9-C9' und C10-C10' auf, die auch mit anderen Besetzungszahlen erhalten werden (dem hier gewählten Fehlordnungsmodell ist das Besetzungsverhältnis 1:1 zugrundegelegt).

⁵¹V-NMR-Spektren

Chemische Verschiebungen und Halbwertsbreiten der 51 V-Resonanzen der Komplexe I (1-15) und II (16-20)

sowie einiger sich von $CpV(CO)_4$ und $s-BuC_5H_4V(CO)_4$ durch Substitution mit zweizähnigen Stickstoffliganden herleitender Komplexe (IA, 21–24) sind in Tab. 4 zusammengestellt. δ ⁽⁵¹V)-Werte sind relativ zu $CpV(CO)_4$ und $VOCl_3$

Tab. 2. Atomkoordinaten und Temperaturfaktoren $[Å^2]$ von $CpV(CO)_4$ und 16

CsHsV	(CO)4			
Atom	x/a	x/b	x/c	Ueq
v	0.5917(1)	0.2500(0)	0.4826(0)	0.0470(9)
C 1	0.3937(4)	0.1514(2)	0.5144(2)	0.0518(29)
C2	0.5929(4)	0.1524(2)	0.3367(2)	0.0656(36)
C 5	0.8986(9)	0.2500(0)	0.5112(7)	0.0924(78)
C6	0.7523(7)	0.1534(5)	0.6278(2)	0.0963(48)
C7	0.6787(9)	0.2500(0)	0.6869(6)	0.0747(62)
01	0.2791(3)	0.0928(2)	0.5354(2)	0.0777(30)
02	0.5933(3)	0.0947(2)	0.2502(2)	0.0875(31)
MeC(O)C5H4V(CO)4,	16		
v	0.2860(0)	0.0500(0)	0.2310(1)	0.0374(3)
C 1	0.7181(3)	0.4791(2)	0.4790(4)	0.0479(16)
C2	0.5695(3)	0.4644(2)	0.2369(4)	0.0533(17)
СЗ	0.7140(3)	0.6408(2)	0.4521(5)	0.0578(19)
C4	0.5630(3)	0.6276(2)	0.2035(5)	0.0587(19)
C5	0.8802(2)	0.4680(2)	0.1664(4)	0.0414(14)
C6	0.9351(2)	0.5469(2)	0.2484(4)	0.0443(14)
C7	0.8899(3)	0.6237(2)	0.1562(4)	0.0505(17)
C8	0.8082(3)	0.5930(2)	0.0172(4)	0.0499(16)
C 9	0.8005(3)	0.4969(2)	0.0195(4)	0.0470(16)
C10	0.9036(3)	0.3720(2)	0.2232(4)	0.0495(16)
C11	0.8325(3)	0.2972(2)	0.1285(5)	0.0685(22)
01	0.7227(2)	0.4364(2)	0.6026(3)	0.0707(16)
02	0,4839(2)	0.4129(2)	0.2184(4)	0.0793(18)
03	0.7152(3)	0.6833(2)	0.5606(4)	0.0827(19)
04	0.4739(2)	0.6723(2)	0.1663(4)	0.0845(19)
05	0.9807(2)	0.3564(1)	0.3434(3)	0.0672(15)

Tab. 3. Ausgewählte Bindungsabstände [pm] und -winkel [°] von $CpV(CO)_4$ und 16

Abstände				Winkel	
CpV(CO)4		16		CpV(CO)4	
V-C1	194.3(3)	V-C1	193.5(2)	C1-V-C1'	82.6(3)
V-C2	193.6(3)	V-C2	193.3(2)	C2-V-C2'	76.4(3)
V-C5	232.1(7)	V-C5	223.1(2)	C1-V-C2	75.7(1)
V-C6	226.9(5)	V-C6	224.1(2)	C5-V-C6	52.2(2)
V-C7	223.0(7)	V-C7	227.7(2)	C7-V-C5	65.6(2)
V-C8	228.2(5)	V-C8	229.3(2)	C7-V-C6	37.5(1)
V-C9	224.5(6)	V-C9	229.0(2)	C5-V-C8	36.2(2)
V-C10	222.6(5)	C5-C6	142.3(4)	C8-V-C9	58.2(2)
C5-C8	143.0(7)	C6-C7	140.3(4)		
C6-C7	144.5(6)	C7-C8	141.2(4)	16	
C9-C9'	130.7(6)	C8-C9	140.9(4)	C6-C5-C10	125.2(3)
C10-C10'	135.1(7)	C9-C5	143.9(4)	C9-C5-C10	126.3(3)
C6-C10′	143.2(7)	C5-C10	149.0(4)	C5-C10-05	119.7(3)
C9-C8′	140.3(7)	C10-C11	149.1(4)	C11-C10-05	121.8(3)
C1-01	114.2(3)	C1-01	114.7(3)	C5-C10-C11	118.5(3)
C2-02	114.7(3)	C2-02	115.2(3)		
		C10-05	149.0(4)		

Tab. 4. ⁵¹V-NMR-Daten der Komplexe Cp'V(CO)₄ I und II

Cp′	δ(⁵¹ V) [;] CpV(CO) ₄	^{a)} [ppm] VOCl ₃	Δ ^{ь)} [ppm]	W _{1/2} ° [Hz]
C ₅ H ₅	0	- 1534		15
				e)
$1a C_5H_4CH_2C_5H_5^{\circ/}$	+4	-1530		•)
$1b C_5H_4CH_2C_5H_4$	+ 5	-1529		e)
2 C ₅ H₄Me	+9	1525		43
$3a/b C_5H_3Me_2$	+19/+14	-1515/-1520	4.4	35
$4a/b C_5H_2Me_3$	+31/+27	-1503/-1507	3.8	35
5 C₅HMe₄	+ 38	- 1496		40
6 C ₅ Me ₅	+ 42	-1492		22
7 C₅Me₄Et	+ 51	- 1483		50
8 C₅H₄n-Pr	+ 10	-1524		40
9 C₅H₄Cy	+13	-1521		50
10a/b C5H3Cy2	+ 29/ + 18	-1505/-1516	11.7	40
11 C ₅ H₄n-heptyl	+18	-1516		45
$12a/b C_5H_3Me(s-Bu)^{1}$	+17/+8	-1517/-1526	10.8	40
	+7/-1	-1527/-1535	8.2	40
$13a/b C_5H_3Me(Cy)$	+ 19/ + 17	-1515/-1517	2.3	45
14a/b C ₅ H ₃ Me(cetyl)	+ 19/ + 16	-1515/-1518	3.1	60
15 C ₅ H₄trityl	+ 50	-1484		350
П				
16 C ₄ H ₄ C(O)Me	+ 128	- 1406		10
18 C ₄ H ₂ C(NOH)Me	+ 75	-1459		e)
19 C ₄ H ₄ CH(OH)Me	+ 24	-1510		e)
20 C _c H _c C(O)Ph	+149	-1385		100
		1000		
2I CnV(CO) cohimb	1340/11321	104/ 213	10.0	200
$21 \text{ CpV}(\text{CO})_2 \text{ schild }$	$\pm 1340/\pm 1321$	-197/-213	75	200
$22 \text{ Cpv}(\text{CO})_2 \text{ dap}$	+1232/+1223	-302/-309	1.5	345 e)
$22a/220 \text{ Cpv}(CO)_3 \text{ dap}^2$	+ 919 u. + 893	-015 u041	24	770
$23a \text{ Cpv}(CO)_{11,2}$ -dach	+ 919/ + 860	-013/-049	24 25	1/0
$250 \text{ Cpv}(\text{CO})_31, 3-\text{dacn}$	+ 074/ + 009		23	360
24 Cp V(CO) ₂ schill	+ 1299/ + 1280/	- 235/ - 248/		440
	+1201/+1203"	-233/-271		

^{a)} Die Angaben erfolgen relativ zu CpV(CO)₄ bzw. VOCl₃. Der Temperaturgradient für CpV(CO)₄ beträgt -0.61 ppm/deg²⁷). Die Temperaturgradienten sind für Systeme mit ähnlichen δ -Werten vergleichbar groß; sie nehmen mit zunehmender Entschirmung des ⁵¹V-Kerns zu. Da die Temperaturkonstanz bei einer Messung bei 298 K in der Regel nicht besser ist als ± 1 deg, sind die δ -Werte in der Tabelle mit einem absoluten Fehler von ca. ± 1 ppm behaftet. $-^{b}$ Differenz der δ -Werte für die beiden Positionsisomeren (1,2- bzw. 1,3-) bzw. (IA) für die beiden Diastereomere. $-^{o}$ Breite der Signale auf halber Höhe (Halbwertsbreite), geschätzter Fehler $\pm 5\%$. $-^{d}$ Die im Gemisch vorliegenden Komplexe haben die Zusammensetzung C₅H₅CH₂C₅H₄V(CO)₄ (1a) bzw. CH₂(C₅H₄)₂[V(CO)₄]₂ (1b). $-^{o}$ Nicht ermittelt. $-^{h}$ Die beiden Sätze von Daten entsprechen den beiden Diastereomeren 12a bzw. 12b; vgl. Lit.⁷⁷. $-^{B}$ Abkürzungen: schiff = 2-pyridyl-CH = N - CH(Me)Ph, dap = 1,2-Diaminopropan, dach = 1,2- und 1,3-Diaminocyclohexan; Cp = C₅H₅, Cp' = C₅H₄(s-Bu). $-^{h}$ Pyridiniminkomplexe wurden früher schon von Brunner dargestellt²⁸⁰. $-^{i0}$ Die beiden Isomeren entsprechen einer Koordination über die NH₂-Gruppe am chiralen (**22a**) bzw. am nicht-chiralen Kohlenstoff (**22b**). Das stärkerer Entschirmung entsprechende Signal wird dabei dem sterisch stärker behinderten Komplex **22a** zugeordnet. $-^{i0}$ Im ungefähren Intensitätsverhältnis 1:2:2.3:3.

angegeben; sämtliche Resonanzen liegen gegenüber CpV(CO)₄ bei tieferem Feld, sind also gegenüber der Mutterverbindung entschirmt, wobei die Entschirmung mit zunehmender Alkylsubstitution einerseits und zunehmender Größe der Alkylgruppe andererseits zunimmt. Komplexe mit zwei unterschiedlichen Substituenten und die Verbindung **4** zeigen zwei Signale im ungefähren Intensitätsverhältnis 1:1 entsprechend dem Vorliegen zweier Stellungsisomerer. Während die Hydroxyethyl-Verbindung **19** in den Bereich der Typ I-Komplexe fällt, ist der ⁵¹V-Kern in den

carbonylierten Komplexen 16 und 20 deutlich entschirmt, eine Erscheinung, die mit dem starken - I-Effekt derartiger Substituenten einhergeht. Über Substituenteneffekte in der Abschirmung von Metallkernen metallorganischer Verbindungen ist verschiedentlich berichtet worden. So korreliert die Abschirmung des ⁵¹V-Kerns in den Komplexen (η^2 -OCR)V(CO)₃diphos (R = R'C₆H₄) mit den Hammet-Konstanten von R²², und in ringsubstituierten Ferrocenen wird für Substituenten, die über einen sp²- oder sp-Kohlenstoff an den Fünfring gebunden sind, eine deutliche Entschirmung des ⁵⁷Fe-Kerns beobachtet²³⁾. Auch die ^{47,49}Ti-NMR-Spektren der Verbindungen $(C_5H_{5-n}Me_n)_2$ Ti(Hal)₂ zeigen eine zunehmende Entschirmung mit zunehmender Methylierung des Cp-Ringes²⁴⁾, und ein ebensolcher Trend wurde für die $\delta(^{95}Mo)$ -Werte in den Komplexen η^{6} -ArenMo(CO)₃ gefunden (Aren = Benzol, Toluol, Xylol und Mesitylen)²⁵⁾. Gerade die beiden zuletzt genannten Beispiele verdeutlichen aber, daß diese auch in unserer Reihe alkylierter Cyclopentadienylvanadium-Komplexe gefundenen Entschirmungsverhältnisse nicht mit einer elektronischen Entlastung des Metalls erklärt werden können. Vielmehr dürften hier sterische Faktoren die ausschlaggebende Rolle spielen: Sterische Behinderung der Vanadium-Cp-Wechselwirkung führt zu einer Erhöhung des paramagnetischen Entschirmungsbeitrages der Gesamtabschirmung, die vergleichbar ist der zunehmenden Entschirmung in den Komplexen CpV(CO)3-PR₃, wenn dort der Raumanspruch des Alkylsubstituenten R im Phosphan zunimmt²⁶⁾. Auf der Grundlage dieser Erklärung ordnen wir die jeweiligen Tieffeldkomponente in Mischungen geometrischer Isomerer (vgl. Tab. 4) dem sterisch etwas stärker belasteten 1,2-Isomer zu.

Die beiden Positionsisomeren 12a und 12b verfügen über zwei verschiedene Chiralitätselemente (die Fünfringebene ist Chiralitätsebene, der zentrale Kohlenstoff der s-Butylgruppe Chiralitätszentrum), und hier werden folglich die den beiden diastereomeren Enantiomerenpaaren entsprechenden zusätzlichen ⁵¹V-NMR-Signale beobachtet⁷⁾ (Tab. 4). Über die Diastereomerenunterscheidung mittels der Vanadium-Kernresonazspektroskopie haben wir bereits früher im Zusammenhang mit Derivaten von CpV(CO)₄ berichtet, die zweizähnige Stickstoffliganden NN* mit einem Chiralitätszentrum enthalten (das zweite chirale Zentrum ist Vanadium; vgl. 21 und 22 in Tab. 4) und damit wie die vergleichbaren, ⁹⁵Mo-NMR-spektrokopisch untersuchten Komplexe [CpMo(CO)₂NN*]^{+ 29} zwei Kernresonanzsignale zeigen³⁰.

Abb. 2 zeigt nun ein Beispiel für das ⁵¹V-NMR-Muster der Isomeren des Komplexes CpV(CO)₃dach (**23**), wie sie bei der photochemischen Umsetzung zwischen CpV(CO)₄ und handelsüblichem Diaminocyclohexan (dach) erhalten werden, das ein Gemisch aus *meso-cis-*1,2- und -1,3-dach und (\pm) -trans-1,2-dach ist. Eine zweifelsfreie Zuordnung der Signale (Abb. 2) gelang hier durch Verwendung reiner Proben an (\pm) -trans-1,2-dach und (R,R)-trans-1,2-dach. Während die in Abb. 2 auftretenden vier Resonanzen den beiden Sätzen von Diastereomeren zugehören, die mit 1,2- bzw. 1,3dach gebildet werden, sind die vier Resonanzen im Spektrum des Schiffbase-Komplexes **24** (Tab. 4) auf die acht Enantio-

Abb. 2. 23.66-MHz-⁵¹V-NMR-Spcktrum der durch Umsetzung von CpV(CO)₃THF mit handelsüblichem Diaminocyclohexan (dach) erhaltenen Tricarbonylkomplexe **23**. Daneben wird ein (hier nicht mit abgebildetes Signal) für die Dicarbonylspezies bei -345 ppm beobachtet. ppm-Werte relativ zu VOCl₃. Die Zuordnung der Signale erfolgte durch Einzeluntersuchungen mit (\pm)- und (*R*,*R*)-trans-1,2-dach

meren zurückzuführen, die in dieser drei Chiralitätszentren aufweisenden Verbindung vorliegen, und die auf vier diastereomere und damit unterscheidbare Paare entfallen. Alle mit Stickstoffbasen teilsubstituierten Carbonyl(cyclopentadienyl)vanadium-Komplexe zeigen im übrigen die extreme Entschirmung des ⁵¹V-Kerns, die beim Austausch des harten π -Akzeptors CO gegen einen relativ weichen σ -Donor zu erwarten ist³¹), ein elektronischer Effekt, der in d⁴- und d⁶-Systemen auftritt und unter der Bezeichnung "normale Abhängigkeit der Metallabschirmung von der Ligandenelektronegativität" ("normal" electronegativity dependence of metal shielding) Eingang in die Literatur gefunden hat ^{32,33)}.

In Tab. 4 ist als weiterer NMR-Parameter die Halbwertsbreite $W_{1/2}$ aufgeführt, die für einen Quadrupolkern (Kernspin von 51 V = 7/2, Quadrupolmoment = $-0.052 \cdot 10^{-28}$ m²) in einer Umgebung, die wegen der geringen effektiven Symmetrie am Kernort einen Feldgradienten erzeugt, auf den ersten Blick überraschend niedrig ausfällt. Tatsächlich konnte Akitt zeigen³⁴⁾, daß auch in Komplexen, die bestenfalls lokale C_{4v} -Symmetrie haben, der Feldgradient dann gegen Null gehen kann, wenn die beiden Ligandensysteme (die vier CO-Gruppen einerseits und der Cp-Ring andererseits) so angeordnet sind, daß ein umhüllender Kegelmantel (Kegelspitze im Koordinationszentrum) mit der Koordinationsachse den magischen Winkel 54°74' bildet. Das ist offenbar in den beiden "symmetrischen" Komplexen CpV(CO)₄ und 6, die die geringsten Linienbreiten aufweisen, recht gut erfüllt, aber auch in allen anderen Komplexen mit Linienbreiten zwischen 30 und 60 Hz noch recht gut angenähert. Lediglich der extrem raumerfüllende Tritylrest induziert (neben einer besonders hohen Entschirmung; s.o.) eine beachtliche Linienbreite (vgl. 15 in Tab. 4), und große $W_{1/2}$ -Werte werden auch bei Substitution im CO-Ligandensystem beobachtet.

IR- und Massen-Spektren

IR-Daten (CO-Valenzschwingungsbereich) sind im Experimentellen Teil (Tab. 9) aufgenommen; das Bandenmuster zeigt Abb. 3. Die Alkylsubstitution am Cp-Ring hat auf die Lage der Banden nur wenig Einfluß; trendmäßig erfolgt mit zunehmender Alkylsub-

Abb. 3. CO-Valenzschwingungsbereich für η^{5} -[C₅H₃(Me)cetyl]-V(CO)₄ (14) in Hexan mit Bezeichnung der Banden für 14 (unter lokaler C_{4v}-Symmetrie) und das ¹³CO-Isotopomere (C_s). Die vertikalen Striche kennzeichnen berechnete Bandenlagen. Zur Berechnung s. Exp. Teil. k, k_c und k_t sind die Kraftkonstanten (vgl. Tab. 7)

stitution eine Verschiebung von v(CO) zu kleineren Wellenzahlen. Die bei ungestörter C_{4v} -Symmetrie IR-verbotene B_1 -Bande, die früher schon für Acetyl- $C_5H_4V(CO)_4^{35}$ sowie in einigen Alkenyl-⁸⁾ und Diphenylmethyl-Cp-Komplexen⁹⁾ beschrieben wurde, tritt nur bei den Komplexen 9, 14, 15 und II auf. Eine Aufspaltung der E-Bande³⁵⁾ wird lediglich im Acetylkomplex 16 und, angedeutet, im Benzoylkomplex 20 registriert.

Die Komplexe I zeigen im Massenspektrum in der Regel das für $CpV(CO)_4$ typische Fragmentierungsmuster³⁶: Zunächst erfolgt schrittweise CO-Abspaltung bis zu $Cp'V^+$. Ethin- bzw. Alkylethin-Abspaltung liefert sodann das Cyclopropenylvanadium-Kation, das den Dreiring unter Bildung von V⁺ abspaltet. Von diesem Grundmuster gibt es je nach Art der Alkylreste am Cyclopentadienylring Abweichungen, wie sie für einige charakteristische Fälle in Tab. 5 zusammengestellt sind.

Im Spektrum der Komplexe **3a/b** werden zwei metastabile Peaks bei m/z = 175.4 (M - CO \rightarrow M - 2 CO) und 120.6 (M - 3 CO \rightarrow M - 4 CO) registriert.

Ringanellierte Komplexe (III)

Sofern am Cyclopentadienring des cyclischen Polyolefins abstraktionsfähiger Wasserstoff vorhanden ist, verläuft die Reaktion prinzipiell wie in Gl. (1) dargelegt, die Reaktionszeiten sind jedoch erheblich länger als mit den offenen Alkylderivaten des Cyclopentadiens. Gemäß Gl. (1) konnten

Tab. 5. Massenspektren einiger ausgewählter Komplexe des Typs I^{a)}

3a,b m/z	Ion	Inten- sität	14 m/z	Ion	Inten- sität
256 228 200 172 144 143 140 129 116 115 114 103 101 91 90 79 77 76 72 67 51 39		67 17 70 30 100 23 27 8 15 31 8 9 9 6 18 22 20 19 20 25 6 18 17	466 438 410 382 354 303 178 164 150 136 122 108 94 80 70 56 51 42		2 1 1 2 43 100 2 6 6 6 6 16 23 54 70 81 7 79
16 m/z	Ion	Inten- sität	16 m/z	lon	Inten- sität
270 242 214 186 158 140 132 130 115 89		3.5 2.8 4.1 15.7 100.0 15.9 13.2 7.5 39.2 66.7	79 76 64 63 61 51 43 39 38	V(CO) VC ₂ H C ₃ H ₄ C ₅ H ₃ VO V COCH ₃ C ₃ H ₃ C ₃ H ₂	15.3 28.4 8.8 12.1 39.1 99.0 30.9 9.9 5.4

^{a)} Intensitäten in %. M ist der Molekülpeak; alle Ionen tragen die Ladung 1+.

z. B. η^5 -Indenyl-V(CO)₄⁶⁾ (25) und der butylsubstituierte Indenylkomplex 26 dargestellt werden. Der Indenylkomplex 25 ist kürzlich auch auf anderem Wege [durch Umsetzung von Na[V(CO)₆] mit ClHg(indenyl)] synthetisiert worden³⁷⁾. Mit Fluoren ist die Reaktion so langsam, daß es zu keiner nennenswerten Umsetzung kommt; eine stürmische Reaktion, die zu η^5 -Fluorenyl-V(CO)₄ (27) führt, wird hingegen mit 9-Bromfluoren beobachtet. Auch 1-Brominden reagiert rasch mit V(CO)₆, wobei ausschließlich die bromfreie Verbindung 25 entsteht.

Anders verläuft die Umsetzung mit cyclischen Polyolefinen, die von V(CO)₆ nicht dehydrogeniert werden können (Azulen, Guajazulen, Acenaphthylen). Über eine offenbar recht stabile radikalische Zwischenstufe⁷⁾ erfolgt Dimerisierung zu den Doppel-Halbsandwichkomplexen **28**, **29** bzw. **30** (Tab. 6), wobei auch hier wieder Cyclopentadienylderivate (η^5 -Koordination) gebildet werden. Der Azulenkomplex **28** wurde bereits früher durch Umsetzung von V(CO)₆ mit Azulen dargestellt und aufgrund IR-spektroskopischer Befunde als Cyclopentadienylderivat identifiziert, jedoch noch mit einer Vanadium-Vanadium-Bindung formuliert³⁸⁾.

Tab. 6. Spektroskopische Daten der Komplexe III und einiger verwandter Komplexe^{a)}

Komplex ^b)	ð	(₩1/2)	√(CC)∘) Aı	(A'<1>)	Bı	E	(A'-)
CpV(CO)₄	-1534	(15)	2029.5	(2021)	1954	1932.5	(1902)
CpV(CO)gPPhg	-13144	=)	•}				
12 Cp'V(CO)₄	-1525	(40)	2020			1920	
25 ind∛(CO)₄	-1375	(38)	2026.5	(2019)	1956.5	1932.5	(1905)
28 s-Bu-ind∛(CO)₄	-1370						
27 fluV(CO)₄	-1118	(40)	2024.0		1953.7	1931.8	(1904)
28 [szuV(CO)4]2	-1428	(70)	2019.5	(2012)	1946.5	1920.5	(1891)
29 [guaV(CO)4]2	-1403	(85)	2028		1943	1920	
30 [scenV(CO)4]2	-1320	(100)	2020.0	(2010)	1951.3	1922.3	(1895)
30Ab [scenV(CO)sPPhs]z	-1115	(700)	£)				
[Cp'2V(CC)2]+#)	~1115						
Cp ₂ V ₂ (CO) ₅	-1664						
[tolV(CO)4]+ #)	-1660						
TpV(CO)s	-1485						

^{a)} Chemische Verschiebungen δ (ppm) relativ zu VOCl₃ und (in Klammern) Linienbreiten $W_{1/2}$ (Hz). Sofern Isomerengemische vorliegen, ist als δ -Wert das Zentrum des Spektrums angegeben. – ^{b)} Abkürzungen: Cp = η^5 -C₅H₅, Cp' = η^5 -C₅H₃(Me)s-Bu, ind = η^5 -Indenyl, s-Bu-ind = η^5 -I-s-Bu-1-Indenyl, flu = η^5 -Fluorenyl, azu = η^5 -Azulen, gua = η^5 -Guajazulen, acen = η^5 -Acenaphthylen, tol = η^6 -Toluol, Tp = η' -Tropylium. – ^{e)} In Klammern sind die im Spektrum registrierbaren A'-Banden des ¹³CO-Isotopomeren angegeben (zu den berechneten Werten s. Tab. 7). Die Intensitätsverhältnisse der Banden sind wie folgt: A₁ (m-s), A'⁽¹⁾ (sh), B₁ (w oder sh), E (vs), A'* (vw – w oder sh). – ^{e)} Die Vanadium-Phosphor-Kopplungskonstante beträgt 157 Hz^{32a)}. – ^{e)} v(CO) = 1955 (A' und 1862 (A' + A'') cm⁻¹. – ^{g)} Daneben wird das äußerst scharfe Signal für das Gegenion [V(CO)₆]⁻ bei –1952 ppm beobachtet.

Die Komplexe stellen gelbe bis gelborange Pulver dar, die bei niedrigen Drucken sublimieren, sich hierbei aber teilweise zersetzen, wobei CO und Vanadium entstehen und der organische Ligand weitgehend regeneriert wird. Bestrahlt man 30 in THF bei -78 °C, so erhält man eine tiefgrüne Lösung (Solvens-stabilisiertes [acenV(CO)₃]₂), die mit Triphenylphosphan in ein Gemisch aus (CO)₄VacenacenV(CO)₃PPh₃ (30 Aa) und (überwiegend) [acenV(CO)₃-PPh₃]₂ (30 Ab) übergeführt wird (Tab. 6).

Der durch Alkylierung von Indenyllithium mit 2-Brombutan und nachfolgende Umsetzung des Butylindens mit V(CO)₆ erhältliche Komplex 26 mit zwei Chiralitätselementen existiert in Lösung in Form der zueinander diastereomeren Enantiomerenpaare pS,S-/pR,R-26 und pS,R-/pR,S-26; die ⁵¹V-Kernresonanzsignale liegen 11.4 ppm auseinander (Abb. 4). Auch die Fünfringebenen der Azulene und des Acenaphthylens weisen nach der Dimerisierung zwei unterschiedliche Substituenten auf, sind also enantiotop. Die Komplexierung eines V(CO)₄-Fragmentes führt dann zur Bildung einer Chiralitätsebene. Da zusätzlich noch Chiralitätszentren vorhanden sind, hat man mit mehreren Diastereomeren und meso-Formen zu rechnen. Im Falle der Verbindung 30 sind dies vier Diastereomere und zwei meso-Formen (die der exo-exo- bzw. endo-endo-Verknüpfung entsprechen), und wir haben kürzlich gezeigt, daß in Lösung lediglich die meso-Formen, im kristallinen Zustand allein die exo-exo-Verknüpfung realisiert werden⁷). In Guajazulen

Abb. 4. 94.73-MHz-⁵¹V-NMR-Spektrum der vier Enantiomeren des Komplexes 26. ppm-Skala relativ zu VOCl₃. Die Verbindung hat eine Chiralitätsebene und ein Chiralitätszentrum; die links bzw. rechts stehenden Formen sind jeweils zueinander diastereomer

Abb. 5. 78.94-MHz-⁵¹V-NMR-Spektren der Doppel-Halbsandwichkomplexe **29** ([GuajazulenV(CO)₄]₂), a, und **28** ([AzulenV(CO)₄]₂, b. Die einzelnen Resonanzen sind den *meso*-Formen zugeordnet (vgl. hierzu Schema 1 und die Diskussion im Text). ppm-Werte relativ zu VOCl₃

sind die Ringebene und drei der Positionen im anellierten Siebenring prochiral. Die Gesamtzahl der Isomeren in [guaV(CO)₄]₂ beträgt 78. Werden nur Dimerisierungen über äquivalente Positionen in den Siebenringen der beiden Guajazulenhälften berücksichtigt, so reduziert sich die Zahl der spektroskopisch unterscheidbaren Isomeren auf 18 (vier diastereomere Enantiomerenpaare und zwei *meso*-Formen je Verknüpfung). Tatsächlich zeigt das ⁵¹V-NMR-Spektrum des Guajazulenkomplexes **29** (Abb. 5a) nur sechs Signale, von denen die vier intensitätsschwächeren zwei Signalpaare bilden, die hinsichtlich Abstand und Intensität ähnlich sind und somit ähnliche stereochemische Verhältnisse widerspiegeln sollten. Engen wir die Anzahl der realisierten Isomeren

Chem. Ber. 121, 1541-1552 (1988)

weiter dahingehend ein, daß nur *meso*-Formen gebildet werden, so ergeben sich die in Schema 2 abgebildeten sechs Möglichkeiten, von denen sich die *exo*- und *endo*-Formen der *para-para*-Verknüpfung (*p-p exo* und *p-p endo* in Schema 2) stereochemisch und damit hinsichtlich der Abschirmung

Schema 2

am ⁵¹V-Kern nur geringfügig unterscheiden und daher den beiden eng beieinanderliegenden und intensitätsstärksten Signalen in Abb. 4b zugeordnet werden. Für die Isomeren des Azulenkomplexes **28** sind 17 NMR-Signale denkbar. Auch hier werden im wesentlichen wieder nur zwei Resonanzen beobachtet (Abb. 5b), die wir vorläufig den beiden *meso*-Formen für die *ortho-ortho*-Verknüpfung zuordnen (*o-o exo* und *o-o endo* in Schema 2). Eine Bevorzugung der *meso*-Formen liegt, wie bereits ausgeführt, auch im Acenaphthylenkomplex **30** vor, findet sich aber ebenfalls in $[azuMo(CO)_3Me]_2^{39}$. Hingegen ergab die Röntgenstrukturanalyse des Mangankomplexes $[azuMn(CO)_3]_2$ ein geordnetes Racemat chiraler Moleküle⁴⁰.

Die Komplexe III zeigen gegenüber denen des Typs I starke Entschirmung des ⁵¹V-Kerns, die mit zunehmender Anellierung am Fünfring (27 und 30 gegenüber 25) zunimmt und bei Benzoanellierung wirksamer ist als bei Siebenringanellierung (25 gegenüber 28). Phänomenologisch läßt sich dieses Verhalten auf eine zunehmend begünstigte Delokalisierung von Elektronendichte aus dem Cyclopentadienylring (und damit fort vom Vanadiumzentrum) auf die anellierten Ringe erklären. In diesen Trend paßt auch die gegenüber CpV(CO)₄ höhere Abschirmung, die für [tolV(CO)₄]⁺ gefunden wird. Der Austausch des starken π -Akzeptors CO gegen den schwächeren Akzeptor PPh₃ wiederum führt zu einer *Ent*schirmung (vgl. **30 Ab** und **30**), und dieses Beispiel zeigt, daß komplexere Mechanismen als der mehr oder minder starke Abzug von Elektronendichte für Änderungen in den Abschirmverhältnissen verantwortlich sind (vgl. z. B. Lit.^{32,33}).

Der CO-Valenzschwingungsbereich der Komplexe III (Tab. 7) ist dem der Komplexe I mit sterisch anspruchsvolleren Alkylresten vergleichbar. In allen Fällen werden die B₁-Schwingung sowie zwei der A'-Schwingungen des ¹³CO-Isotopomeren beobachtet, was die Berechnung aller drei Kraftkonstanten und der dritten A'- (Tab. 7) sowie der A"-Schwingung (vgl. Abb. 3) zuläßt. Die Beobachtbarkeit der Schwingung der Rasse B₁ deutet auf eine Störung der lokalen C_{4v} -Symmetrie hin, die sich zugleich in einer Verbreiterung der E-Bande manifestiert, wobei die Verbreiterung in der Reihe CpV(CO)₄, **25**, **27**, **28**, **30** zunimmt.

Tab. 7. Kraftkonstanten^{a)} und berechnete Banden von Komplexen des Typs III^{b)}

Komplex	k	k,	k,	A' ⁽¹⁾	A' ⁽²⁾	A′*
CpV(CO) ₄ ^{c)} 25 27 28 30	1555.4 1555.3 1552.5 1539.0 1539.0	30.4 28.0 28.2 29.3 27.5	47.2 47.1 45.4 49.5 50.3	2018.7 2016.2 2011.7 2012.2	1951.0 1948.3 1940.3 1944.9	1902.6 1901.5 1891.2 1893.3

^{a)} In N · m⁻¹. k_c und k_i sind die Kraftkonstanten für *cis*- bzw. *trans*-Wechselwirkung. Die Berechnung erfolgte unter Verwendung der zu den Rassen A₁, B₁ und E gehörenden Banden und für die in *n*-Hexan bzw. Toluol (**28**, **30**) ermittelten Wellenzahlen. – ^{b)} In cm⁻¹. A'⁽¹⁾ und A'⁽²⁾ gehören zum v(¹²CO)-Satz des Isotopomeren Cp'V(¹²CO)₃(¹³CO) (4.4%), A'* gehört zu v(¹³CO). Die A''-Bande, die mit der E-Bande der all-¹²CO-Komplexe zusammenfällt, ist nicht mit aufgeführt. Vgl. auch Abb. 3 und den Exp. Teil. – ^{c)} Siehe auch Lit.¹⁰.

Die Arbeit wurde durch ein Stipendium (M. H.) des Fonds der Chemischen Industrie und durch die DFG unterstützt.

Experimenteller Teil

Allgemeine Angaben: Alle Operationen wurden in hochgereinigten, absoluten Lösungsmitteln unter Ar-Schutzgas und unter Vermeidung direkter Lichteinstrahlung durchgeführt. Die Verbindungen wurden nach Darstellung und Trocknung (4 h, Hochvak.) unter Lichtausschluß aufbewahrt. Die Schmelzpunktbestimmungen wurden in der Regel in zugeschmolzenen Kapillaren durchgeführt.

 $V(CO)_6$ wurde aus [Na(diglyme)₂][$V(CO)_6$] (Ventron) mit kristallisierter Phosphorsäure hergestellt, Cp₂V₂(CO)₅ durch Bestrahlung^{4a)} von CpV(CO)₄ (Ventron), TpV(CO)₃ durch Reaktion von $V(CO)_6$ mit Tropyliden⁴¹⁾ und [TolV(CO)₄][$V(CO)_6$] aus $V(CO)_6$ und Toluol⁴²⁾. 9-Bromfluoren und 1-Brominden wurden durch Bromierung mit NBS⁴³⁾ bzw. Photobromierung (Brominden)⁴⁴⁾ synthetisiert. Das über den Handel bezogene Inden enthält in der Regel bis zu 10% destillativ schwer abtrennbare Alkylbenzole. Das Inden

wurde daher durch Überführen in Indenyllithium (mit Butyllithium in Hexan), Waschen mit reichlich *n*-Pentan, anschließende Hydrolyse und Destillation gereinigt. Zur Darstellung der Alkylcyclopentadiene wurde, sofern unten nicht aufgeführt, auf bekannte Verfahren zurückgegriffen. Die Komplexe η^5 -C₅H₃(s-Bu)MeV(CO)₄ (12) und [η^5 -Acenaphthylen-V(CO)₄]₂ (30) wurden wie früher beschrieben^{6,7)} synthetisiert. Kieselgel 60 (Merck; 70–230 mesh ASTM) wurde durch einstündiges Abpumpen i. Hochvak. und Beladen mit Argon vorbehandelt. Die Säulenabmessungen betrugen, wenn nicht anders vermerkt, 20 × 2.5 cm.

Spektren: ¹H-NMR: 5-mm-Röhrchen, Geräte WP 80 bzw. (25) AM 360 der Fa. Bruker, Raumtemp., TMS interner Standard. -⁵¹V-NMR: Gerät Bruker AM 360, 94.6 MHz (in einigen Fällen auch Bruker EM 300 und WH 90; vgl. Abb. 2 und 4), 10-mm-Probenröhrchen, [D₆]Aceton oder CDCl₃, Konzentration ca. 0.05 mol/l. Typische Einstelldaten: Pulswinkel 30-45°, Sweepbreite 50 kHz (Aquisitionszeit 0.041 s), 8 K Datensatz (digitale Auflösung 6 Hz/ point), Scanzahl 2500. In der Regel wurde ohne Linienverbreiterungsfaktor und ohne Delayzeit gearbeitet. Die Referenzierung wurde gegen VOCl₃ vorgenommen. Wegen der großen Temperaturgradienten der Komplexe (typischerweise -0.7 ppm/deg) wurde bei allen Messungen auf 298(1) K thermostatisiert. - Massenspektren (75 eV): Modifiziertes CH7-Spektrometer der Fa. Finnigan. -IR-Spektren: 0.1-mm-KBr-Küvetten, Perkin-Elmer-Spektrometer 557 bzw. 375 im Falle der für die Kraftkonstantenberechnung ermittelten Daten. Die Kraftkonstanten der Komplexe Cp'V(CO)4 wurden mit den in Lit.¹⁾ angegebenen Säkulargleichungen berechnet, die Berechnung der Bandenlagen für die Komplexe Cp'V(CO)3-(¹³CO) erfolgte unter Verwendung der folgenden Säkulardeterminante:

$$\begin{array}{c|ccccc} 3A' & \left| \begin{array}{cccc} g'(k-k_{t})-\lambda & g'\cdot 2k_{c} \\ g\cdot k_{t} & g(k+k_{t}-2k_{c})-\lambda \\ A'' & 0 & 0 \\ & g'\cdot 2k_{c} & 0 \\ g\cdot 2k_{c} & 0 \\ g(k+k_{t})-\lambda & 0 \\ 0 & g(k-k_{t})-\lambda \end{array} \right| = 0$$

(g ist die reduzierte Masse für ${}^{12}C^{16}O$, g' für ${}^{13}C^{16}O$)

Röntgenstrukturanalysen wurden an einem Syntex-P2₁-Vierkreisdiffraktometer (Mo- K_{α} -Strahlung, Raumtemperatur) durchgeführt. Absorptionskorrekturen wurden nicht vorgenommen. Die Lösung der Strukturen erfolgte durch direkte Methoden mit Hilfe der Programme MULTAN⁴⁵⁾ und SHELX⁴⁶⁾. Die abschließende Verfeinerung [mit den Wasserstoffatomen in berechneten Lagen bei **16** bzw. ohne Wasserstoffatome bei CpV(CO)₄] wurde mit anisotropen Temperaturfaktoren (für die Nichtwasserstoffatome) durchgeführt. Weitere Einzelheiten enthält Tab. 1. Die Zeichnungen der Molekülstrukturen wurden mit dem Programm SCHAKAL⁴⁷⁾ erstellt. Geeignete Kristalle der Komplexe CpV(CO)₄ und **16** fielen bei langsamem Einengen der Hexanlösungen dieser Verbindungen an.

Allgemeine Vorschrift zur Darstellung der Komplexe η^{s} -Cyclopentadienyl $V(CO)_{4}$ (I)

Mono-n-alkylierte Cyclopentadiene: 40 ml einer 2 M Lösung von Natriumcyclopentadienid (aus NaH und C_5H_6 ; s. u.) in THF wurden langsam mit einer äquimolaren Menge *n*-Alkylhalogenid versetzt. Es wurde 4 h bei 40 °C gerührt und sodann auf Eiswasser gegossen. Das Hydrolysat wurde mit Pentan versetzt, die Pentanphase durch Waschen mit Wasser von THF befreit und die wäßrige Phase noch einmal mit Pentan extrahiert. Die vereinigten Pentanphasen, wurden mit Na₂SO₄ getrocknet, und die Hauptmenge Pentan wurde im Wasserstrahlvak. entfernt. Sodann wurde fraktioniert destilliert (Tab. 8).

Tab. 8. Daten zur Darstellung von Alkylcyclopentadienen

Ср′Н	RX	Sdp. [°C] [Torr]	Schmp. [°C]
CsHs(butyl)	n-C₄H9Br	68[20]	
CsHs(pentyl)	n-CsH11Cl	77[20]	
CsHs(hexyl)	n-CsH13Br	84[20]	
CsHs(heptyl)	n-C7H15Br	99[20]	
CsHs(octyl)	n-C e H17Br	59[3]	
CsHs(decyl)	n-CioH21Br	50[0.5-1]	
CsHs(dodecyl)	n-C12H25Cl	49[0.1]	
CsHs(cetyl) a)	n-C18H33I		(a
CsHs(octadecyl)	п-СівНэ7І		ь)
CsHs(trityl)°)	(CeHs)3CCl		192
C5H₄Me(Cy)	CeH11Br	80-87[17]	
C5H4Me(s-Bu)	s-C4HeBr	138[10]	
C5H4Me(cetyl)d)	п-СівНээІ		10-14
C5H4Cy2	CeHılBr	40[1]	
C5H4(s-Bu)2	s-C4HeBr	80[1]	
(C5H5)2CH20)	CH2C12	50[0.5]	

^{a)} NaCp wurde im 1.5fachen Überschuß eingesetzt. Zur Entfernung niedrig siedender Beimengungen wurde 6 h bei 40°C i.Hochvak. gerührt. – ^{b)} Wachsartige Produkte mit Erweichungsbereichen zwischen 25 und 35°C. – ^{c)} Aus Petrolether (60–80°C) umkristallisiert. – ^{d)} Über 7 cm Kieselgel filtriert und 5 h bei 60°C i.Hochvak. gerührt. – ^{e)} Kein einheitliches Produkt; enthält geringe Beimischungen an C₅H₅CH₂Cl und C₅H₄(CH₂Cl)₂.

Sonstige Alkylcyclopentadiene: 2.38 g (77.2 mmol) NaH (80proz. in Paraffinöl) wurden dreimal mit je 20 ml Pentan gewaschen, getrocknet und mit 100 ml THF versetzt. Unter Eiskühlung wurde sodann frisch gecracktes Cyclopentadien so zugetropft, daß mäßige Wasserstoffentwicklung erfolgte. Falls nach 30 min Rühren (beim Einsatz von Methyl- und höhersubstituierten Cyclopentadienen sind längere Reaktionszeiten erforderlich) noch unumgesetztes NaH vorhanden ist (Trübung), wurde weiteres Cyclopentadien bis zur Klärung der Lösung zugetropft. Die meist rosafarbenen Lösungen wurden sodann mit Alkylhalogenid versetzt, wobei die Zugabe so gesteuert wurde, daß die Reaktion mäßig verlief. Je nach Reaktivität des Alkylhalogenids wurde noch 1-2 h bei Raumtemp, gerührt oder unter leichtem Sieden unter Rückfluß gekocht. Die farblosen bis gelben Lösungen wurden sodann im Wasserstrahlvak. eingeengt, die Rückstände mit Ether aufgenommen, die Lösungen filtriert und mit Wasser gewaschen. Nach Trocknen mit MgSO4 wurde fraktioniert destilliert (Tab. 8).

Tetracarbonyl(η^{5} -cyclopentadienyl)vanadium-Komplexe (I): Die Lösung von 503 mg (2.3 mmol) V(CO)₆ in 40 ml *n*-Hexan wurde unter Rühren mit dem 1.3fachen Überschuß von frisch bereitetem Cyclopentadien versetzt und 3 h bei 35-45 °C unter Rückfluß erhitzt und gerührt. Nach Abfiltrieren von [Cp₂V(CO)₂][V(CO)₆] und fein verteiltem Vanadium, Entfernen des Lösungsmittels (Raumtemp., Vak.) und Wiederaufnahme des Rückstands mit wenig Lösungsmittel wurde an Kieselgel mit *n*-Hexan als Laufmittel chromatographiert. Nach einem farblosen Vorlauf, der verschiedene Folgeprodukte nicht umgesetzten Cyclopentadiens enthält, wurde eine orangefarbene, die Komplexe enthaltenden Fraktion erhalten,

Komplex a)	V(CO)b)			Ausb	eute	Sc hmp .≎)	Erscheinungsform
				(ng)	(z)	(•C)	
la,b	2030	1920		d)			gelbes Öl
2	2026	1929	1902	390	70	42	orange Krist.
3 a ,b	2020	1925		440	75		oranges Öl
4a ,b	2020	1924		370	60		oranges Öl
5	2017	1919	1890	325	50		oranges Öl
6	2015	1917	1886	500	73	142	orange Krist.
7	2016	1917	1890	560	78	131	orange Krist.
8	2025	1924	1900	435	70	61	orange Krist.
9•	2021	1920	1896	555	78	65	gelbor. Krist.
10 a ,b	2025	1924		585	65	38-45	orange Krist.
12a,b ^{d)}	2020	1920		505	74		oranges Öl
1 3 a,b	20 22	1923	1895	400	54	40-46	orange Krist.
14a,br)	2024	1926	1894•)	605	58	30- 3 5	hellgelbes Wachs
15 s)	2030	1925	1888•)	920	85		gelbe Krist.

^{a)} Zur Numerierung der Komplexe vgl. Tab. 4. – ^{b)} Die Intensitätsverhältnisse der Banden sind wie folgt (von links nach rechts): A₁ (m-s), E (vs), A'* (vw; diese Bande gehört zum ¹³C-Isotopomer, vgl. Tab. 7 und Abb. 3). – ^{c)} Bei fehlender Angabe war eine Bestimmung des Schmelzpunktes nicht möglich. – ^{d)} Wegen uneinheitlicher Zusammensetzung nicht ermittelt. – ^{e)} Schulter bei 1940 cm⁻¹. – ⁰ Schultern bei 2016 und 1943 cm⁻¹ (Abb. 3). – ^{g)} Schulter bei 1945 cm⁻¹.

aus denen die Komplexe I nach Entfernen des Lösungsmittels i. Vak. isoliert wurden (Tab. 9). Alle Verbindungen sind durch ihre Massenspektren (Molekülpeak und Fragmentierungsmuster) abgesichert.

Substitution im Carbonylsystem; Darstellung der Komplexe IA: Eine Lösung von 220 mg (1.0 mmol) CpV(CO)₄ in 50 ml THF wurde mit einem 1.2molaren Überschuß des zweizähnigen Stickstoffliganden NN [1,2-Diaminopropan (dap), Diaminocyclohexan (dach) und die Schiffsche Base 2-Pyridyl-CH = N - CH(Me)Ph versetzt und bei Temperaturen um -5 °C unter Hindurchleiten eines schwachen Argonstroms bestrahlt. Als UV-Quelle diente eine Hochdruckquecksilberlampe HPK 125 der Fa. Philips im wassergekühlten Quarztauchrohr in unmittelbarer Nähe der die Reaktionslösung enthaltenden Duranglasapparatur. Die nach 10 min tiefroten Lösungen weisen das v(CO)-Bandenmuster der monosubstituierten Komplexe CpV(CO)₃NN (1950 \pm 5 und 1860 cm⁻¹) auf. Die Bestrahlung wurde bis zur IR-spektroskopisch kontrollierten Bildung der cis-disubstituierten Produkte 21, 22 bzw. 24 [v(CO) = 1835 und 1720 cm⁻¹] weitergeführt (30 bis 50 min). Die extrem luftempfindlichen, violetten Lösungen wurden von geringen Mengen Zersetzungsprodukt abfiltriert, bis annähernd zur Trockne eingeengt und durch tropfenweises Versetzen mit 15-30 ml Pentan gefällt. Die Niederschläge wurden abfiltriert und solange mit Pentan gewaschen, bis die Waschlösungen farblos waren. Nach einmaligem Umfällen aus THF/Pentan und Trocknen fielen die Verbindungen in Form schwarzer, pyrophorer Pulver an, die wegen ihrer geringen Haltbarkeit sogleich vermessen wurden. 23 wurde durch Versetzen einer Lösung von CpV(CO)₃THF [photochemisch aus CpV(CO)₄ in THF bei -78°C erzeugt³¹] bei -50°C mit dach, langsames Erwärmen auf zunächst -20°C (bei dieser Temp. erfolgt der Ligandenaustausch) und schließlich auf Raumtemp. erhalten.

Funktionalisierung von $C_3H_3V(CO)_4$; Darstellung der Komplexe II

(η^{3} -Acetylcyclopentadienyl)tetracarbonylvanadium (16): 2.5 g (11.0 mmol) C₅H₅V(CO)₄ wurden nach der Vorschrift von Fischer und Plesske¹³⁾ mit Acetanhydrid/AlCl₃ acetyliert. Die Aufarbeitung wurde jedoch nicht wie dort angegeben durch eine Sublimation abgeschlossen, sondern durch Chromatographie an Kieselgel (Säulenabmessungen 15 × 5 cm) mit THF. Das Produkt wurde als tiefrotes Band eluiert, die Lösung auf 10 ml eingeengt und 2 Tage bei -25 °C belassen, wobei 16 in Form quaderförmiger Kristalle anfiel, die auch Verwendung für die Röntgenstrukturanalyse fanden. Nach Trocknen i. Hochvak. Ausb. 2.56 g (86%) rote Kristalle, Schmp. 101 °C. - ¹H-NMR ([D₆]Aceton): $\delta = 5.82$ und 5.45 (Triplettstruktur angedeutet, 4H, C₃H₄), 2.31 [s, 3H, CH₃]. - IR (Hexan): v(CO) = 2035 cm⁻¹ (A₁), 1965 (B₁), 1935/1945 (E), 1910 (A'), 1697 [O = C(Me)]; s.a. Lit.^{1.35}].

16 kann auch wie folgt dargestellt werden: Die Lösung von 650 mg (5.0 mmol) NaC₅H₄C(O)Me in 20 ml THF wurde mit 1.34 g (4.9 mmol) HgCl₂ versetzt. Nach Abklingen der Reaktion wurde die gelbliche, leicht trübe Lösung 10 min gerührt und sodann tropfenweise mit einer Lösung von 1.745 g (5.0 mmol) $[Et_4N][V(CO)_6]$ (aus $[Et_4N]Cl$ und $[Na(diglyme)_2][V(CO)_6]$ in H₂O/MeOH) in 5 ml THF versetzt, wobei sich die Lösung unter schwacher Gasentwicklung über rot nach orange verfärbte. Nach zweitägigem Rühren bei Raumtemp. wurde das Lösungsmittel i. Vak. entfernt, der Rückstand mit Wasser gewaschen und nach Trocknen i. Vak. wie oben beschrieben chromatographiert. Ausb. 620 mg (46%).

Derivatisierung von 16

2,4-Dinitrophenylhydrazon (17): Die Lösung von 100 mg (0.37 mmol) 16 in 10 ml Ethanol wurde mit 80 mg (0.40 mmol) 2,4-Dinitrophenylhydrazin versetzt. Nach 24 h Rühren wurde auf 2 ml eingeengt, der orangefarbene Niederschlag abfiltriert, mit Hexan gewaschen und getrocknet. Ausb. 90 mg (53%). Gelbes Pulver, Schmp. 110°C. – ¹H-NMR ([D₆]Aceton): $\delta = 4.84$ (br, 4H, C₅H₄), 2.78 (s, 3H, CH₃), 8.0/8.3/8.5 (m, 3H, aromat. H). – IR (THF): v(CO) = 2033 cm⁻¹ (A₁), 1950 (B₁), 1915 (E), v(N=C) = 1650 cm⁻¹.

Oxim (18): Die Lösung von 100 mg (0.37 mmol) 16 in 10 ml Ethanol wurde mit einer Mischung aus 20 mg Hydroxylammoniumsulfat und 20 mg Hydroxylamin versetzt. Nach 24 h Rühren wurde das Lösungsmittel i. Vak. entfernt, der Rückstand mit Wasser gewaschen, getrocknet und in THF aufgenommen. Nach Filtrieren wurde die Verbindung 18 durch Entfernen des THF i. Vak. im Gemisch mit noch etwa 20% 16 gewonnen. ¹H-NMR (CDCl₃) von 18: $\delta = 5.26$ und 5.64 [Pseudo-Tripletts, 4H, C₃H₄], 1.85 [s, 3H, CH₃], 9.80 [br, 1H, NOH].

Alkohol (19): Die Lösung von 200 mg 16 (0.74 mmol) in 25 ml Diethylether wurde mit 35 mg (0.92 mmol) Li[AlH₄] versetzt und 2 h unter Rückfluß gekocht. Nach Zugabe von 30 ml H₂O wurde die Mischung dreimal mit 20 ml Ether extrahiert, die etherische Phase mit Na₂SO₄ getrocknet und der Ether i. Vak. entfernt. 19 fällt hierbei im Gemisch mit dem Ausgangsprodukt 16 an. – ¹H-NMR ([D₆]Aceton) von 19: $\delta = 5.16$ und 5.35 (br, 4H, C₅H₄), 1.37 (d, J = 4.2 Hz, 3H, CH₃), 2.85 (s, 1H, OH).

 $(\eta^{5}$ -Benzoylcyclopentadienyl)tetracarbonylvanadium (20): Eine Lösung von 700 mg (3.07 mmol) C₃H₃V(CO)₄ in 50 ml CH₂Cl₂ wurde vorsichtig mit 800 mg (6.0 mmol) AlCl₃ und 320 mg (4.1 mmol) Benzoylchlorid, gelöst in 20 ml CH₂Cl₂, versetzt. Die sich rasch nach Tiefrot verfärbende Lösung wurde 4 h unter Rückfluß erhitzt und der Reaktionsansatz unter Eiskühlung in 40 ml 2 M HCl gegeben. Nach viermaligem Ausschütteln mit je 20 ml CH₂Cl₂ wurden die vereinigten organischen Extrakte zweimal mit je 50 ml Wasser gewaschen, zur Trockne eingedampft, der Rückstand in 5 ml THF aufgenommen und über Kieselgel chromatographiert, wobei zunächst mit Hexan nicht umgesetztes C5H5V(CO)4 und sodann mit THF der Komplex 20 eluiert werden konnten. Nach Entfernen des THF i. Hochvak. wurde 20 als hochviskoses, rotorange gefärbtes Öl isoliert. Ausb. 620 mg (61%); 175 mg (25%) C₅H₅V(CO)₄ konnten zurückgewonnen werden. - ¹H-NMR ([D₆]Aceton): $\delta =$ 5.87 und 5.52 (Triplettstruktur angedeutet, 4H, C₅H₄), 7.7-7.8 und 8.1 - 8.2 (m, 5H, aromat. H). - MS: m/z (%) = 220 (11.0) [M -4 CO], 192 (2.0) [C₅H₄Ph], 105 (100) [PhCO], 77 (31.3) [Ph], 51 (5.3) [V], 39 (2.3) $[C_3H_3]$; der Molekülpeak wird nicht, die Peaks für M -CO, M - 2 CO und M - 3 CO werden mit nur sehr geringer Intensität beobachtet. – IR (THF): $v(CO) = 2034 \text{ cm}^{-1} (A_1), 2026$ (A⁽¹⁾), 1963 (B₁), 1940 (E, mit angedeuteter Schulter zu kleineren Wellenzahlen), 1909 (A'*).

Umsetzung von $C_3H_3V(CO)_4$ mit Trichloracetylchlorid und Trifluoracetanhydrid: 550 mg (2.41 mmol) $C_3H_3V(CO)_4$ in 40 ml CH₂Cl₂ wurden mit 650 mg (4.88 mmol) AlCl₃ und sodann langsam mit 450 ml CCl₃COCl versetzt. Die Mischung verfärbte sich unter Aufsieden blauviolett. Nach einstündigem Rühren wurde der Ansatz vorsichtig in 10 ml Eiswasser gegeben, dreimal mit 30 ml CH₂Cl₂ gewaschen, die vereinigten organischen Extrakte wurden mit CaCl₂ getrocknet, und das Lösungsmittel wurde i. Vak. entfernt. Das rotviolette Pulver (Ausb. 880 mg, 80%) wurde als $C_5H_5V(O_2CCCl_3)_2$ identifiziert. Die zu $C_5H_5V(O_2CCF_3)_2$ führende Reaktion wurde analog, jedoch unter Verwendung von (CF₃CO)₂O, durchgeführt. Die Ausbeute, ausgehend von 750 mg (3.29 mmol) $C_5H_5V(CO)_4$, betrug 845 mg (75%).

Anellierte Derivate von $C_5H_5(CO)_4$, III

Tetracarbonyl(η^{s} -fluorenyl)vanadium (27): Eine Lösung von 340 mg (1.55 mmol) V(CO)₆ in 15 ml *n*-Hexan wurde portionsweise mit 708 mg (3.60 mmol) 9-Bromfluoren versetzt, wobei eine stürmische Gasentwicklung erfolgte. Die Lösung wurde von viel graugelbem Niederschlag (Vanadium und $[(\eta^{s}-Fluorenyl)_{2}V(CO)_{2}][V(CO)_{6}]$) abfiltriert und an Kieselgel mit Hexan chromatographiert. Aus der orangefarbenen Fraktion wurden nach Entfernen des Lösungsmittels i.Vak. 25 mg (5%) orangefarbenes, feinkristallines 27 isoliert. – ¹H-NMR (CDCl₃): $\delta = 4.92$ (t, J = 0.7 Hz, 9H, Cyclopentadienyl-H), aromat. H wie in Fluoren. – MS: Der Molekülpeak und die vier durch sukzessiven CO-Verlust entstehenden Fragmente sowie V(CO)⁺ und V⁺ werden beobachtet. Im übrigen ähnelt das Spektrum dem des Fluorens.

Tetracarbonyl(η^{5} -indenyl)vanadium (25): Die Darstellung aus V(CO)₆ und Inden ist in Lit.⁶ beschrieben. Alternativ kann auch 1-Brominden eingesetzt werden: 200 mg (0.91 mmol) V(CO)₆, gelöst in 12 ml Hexan, wurden tropfenweise und unter Rühren mit einer Lösung von 180 mg (0.90 mmol) 1-Brominden in 4 ml Hexan versetzt. Hierbei wurde kräftige Gasentwicklung und die Bildung eines braunen Niederschlages beobachtet. Nach zweistündigem Rühren wurde abfiltriert, die Lösung zur Trockne eingedampft und der feinkristalline Rückstand (25) getrocknet. Ausb. 175 mg (45%). – ¹H-NMR (CDCl₃; zur Bezeichnung der Wasserstoffatome s. Formeln): $\delta = 5.715$ (d, J = 2.5 Hz, 2H, H_A), 5.058 (t, 1H, H_B), 7.075 (dd, J = 2.0 und 6.5 Hz, 2H, H_C), 7.448 (dd, 2H, H_D). – Zum MS vgl. Lit.⁶).

 $(n^{5}-1-Butyl-1-indenyl)$ tetracarbonylvanadium (26): 10 ml (77) mmol) frisch destilliertes Inden wurden in 10 ml THF gelöst und durch Zutropfen von 37 ml (80 mmol) 2.16 M LiBu/Hexan lithiiert. Nach 30 min Rühren wurde innerhalb 15 min mit 8.8 ml (80 mmol) 2-Brombutan versetzt und 1 h gerührt. Die Lösungsmittel wurden im Wasserstrahlvak. entfernt, der Rückstand wurde mit H2O versetzt und die Mischung dreimal mit je 50 ml Pentan extrahiert. Nach Trocknen mit Na2SO4 wurde das Pentan i. Vak. entfernt und die gelbliche Flüssigkeit fraktioniert. Ausb. 9.0 g (73%) farbloses 1s-Bu-Inden, Sdp. 90 °C/1 Torr. - ¹H-NMR (CDCl₃): $\delta = 0.96$ (d, J = 8.8 Hz, 3H, CHCH₃), 2.05 (m, 1H, CHCH₃), 1.24 (t, J = 6.2Hz, 3H, CH₂CH₃), 1.51 (qd, 2H, CH₂CH₃), 3.48/6.79/6.33 [m, je 1 H, 5 Fünfringprotonen H_{A'}/H_B/H_A (vgl. Formeln)], 7.36 (m, 4 H, Sechsringprotonen H_C und H_D). - Im GC-MS liefern die beiden Diastereomeren zwei annähernd intensitätsgleiche Peaks.

190 mg (1.10 mmol) Butylinden wurden mit 200 mg (0.91 mmol) V(CO)₆ in 30 ml Hexan 3 h zum Sieden erhitzt. Nach Filtrieren wurde das Lösungsmittel i. Vak. entfernt, der ölige, orangefarbene Rückstand 2 h i. Hochvak, gerührt und sodann auf Kieselgel mit Hexan/THF (4:1) chromatographiert. Nach Entfernen des Lösungsmittels i. Vak. und Trocknen fiel ein orangefarbenes Öl an, das nach zweitägiger Lagerung bei -25 °C kristallisierte. Ausb. 210 mg (69%), Schmp. $32-37^{\circ}C. - {}^{1}H-NMR$ (CDCl₃): $\delta = 1.08$ (d, J =6.8 Hz, 3 H, CHCH₃), 2.24 (qt, 1 H, CHCH₃), 0.87 (t, J = 7.4 Hz, 3H, CH₂CH₃), 1.40 (qd, 2H, CH₂CH₃), 5.11 (d, J = 2 Hz, 1H, H_B), 5.72 (d, 1 H, H_A), 7.40 (m, 2 H, H_D), 7.05 (m, 2 H, H_C). Nach dem 51 V NMR-Spektrum liegen zwei Diastereomere im ungefähren Verhältnis 1:2 vor (vgl. Abb. 4).

Ebenso sind auch 1-n-Butylinden und $(\eta^{5}-1-n-Bu-1-indenyl)$ -V(CO)₄ (Ausb. 79%, bezogen auf Butylinden) darstellbar.

Photochemische Umsetzung von 30 mit Triphenylphosphan: 110 mg (0.17 mmol) 30 in 15 ml THF wurden bei -78 °C unter Hindurchleiten von N₂ bestrahlt (zu den Bestrahlungsbedingungen s. die Darstellung der Komplexe IA). Der nach 15 min erhaltenen tiefgrünen Lösung ([acenV(CO)₃THF]₂) wurden 150 mg (0.57 mmol) PPh₃ zugesetzt und die Lösung sodann langsam bis auf Raumtemp. erwärmt. Der Austausch von THF gegen PPh3 erfolgt ab etwa -5° C und ist durch eine Verfärbung nach Rotbraun zu erkennen. Daneben wird 30 zurückgebildet. Der Umsatz beträgt ca. 60% (gemäß IR) und kann durch Wiederholung des Austauschcyclus auf 85% gesteigert werden. Die so erhaltene Lösung wurde auf 2 ml eingeengt, die Hauptmenge überschüssigen Phosphans mit Pentan ausgefällt und abfiltriert. Säulenchromatographie der eingeengten Lösung an Kieselgel mit Hexan/THF (1:1) gestattet die Abtrennung nicht umgesetzten Ausgangsproduktes 30 (1. Fraktion) und die Isolierung einer 9:1-Mischung aus zweifach- und einfach substituierten Komplexen 30Ab und 30Aa nach Fällung mit Pentan. Ausb. 150 mg (61%, berechnet für 30Ab, bezogen auf 30).

 $Bis(\eta^{5}$ -azulen)octacarbonyldivanadium (28): 118 mg (0.54 mmol) V(CO)₆ und 56 mg (0.15 mmol) Azulen wurden 2 h in 15 ml Hexan unter Rückfluß gekocht. Die dabei anfallende Suspension aus schmutziggelbem Niederschlag und gelber Lösung wurde eingedampft und der gelbe Rückstand mit 5 ml THF aufgenommen. Von wenig fein verteiltem Vanadium wurde abfiltriert und nach Entfernen des THF i.Vak. getrocknet. Spektroskopische Daten entsprachen denen der Literaturwerte³⁸⁾.

 $Octacarbonylbis(\eta^{5}-guajazulen)divandium$ (29): 565 mg (2.85 mmol) Guajazulen und 620 mg (2.83 mmol) V(CO)₆ wurden in 35 ml Hexan 24 h bei 30°C gerührt, die gelbgrüne Lösung wurde zur Trockne eingedampft, der Rückstand mit 3 ml THF aufgenommen und an Kieselgel chromatographiert. Mit Hexan wurde zunächst eine blaue Fraktion (nicht umgesetztes Guajazulen) abgetrennt und

sodann mit THF/Hexan (1:3) eine gelbe Lösung des Komplexes 29 eluiert. Geringe Mengen auf dem Säulenkopf verbleibenden, orangefarbenen Rückstandes erwiesen sich als Hexacarbonylvanadat(-I). Nach Entfernen des Lösungsmittels i. Vak. und Trocknen wurde 29 als gelbes, feinkristallines Pulver erhalten. Ausb. 850 mg (83%), Schmp. 237°C (unter Blaufärbung). Im Massenspektrum konnten wegen der geringen Flüchtigkeit der Verbindung nur die von der thermischen Zersetzung des Guajazulens herrührenden Peaks aufgefunden werden.

CAS-Registry-Nummern

1a: 115092-24-5 / 1b: 115092-38-1 / 2: 63339-27-5 / 3a: 115092-25-6 / 3b: 115092-39-2 / 4a: 115092-26-7 / 4b: 115092-40-5 / 5: 115092-27-8 / 6: 84270-55-3 / 7: 102782-29-6 / 8: 115092-28-9 / 9: 115092-29-0 / 10a: 115092-30-3 / 10b: 115092-41-6 / 11: 115092-31-4 / (*pR*,*R*)-**12a**: 111349-33-8 / (*pR*,*S*)-**12a**: 111464-95-0 / (*pR*,*R*)-**12b**: 111349-34-9 / (*pR*,*S*)-**12b**: 111465-82-8 / **13a**: 115092-32-5 / **13b**: 115092-42-7 / **14a**: 115092-33-6 / **14b**: 115092-43-8 / **15**: 102782-28-5 / 16: 33153-37-6 / 17: 115117-67-2 / 18: 115092-34-7 / **19**: 115092-35-8 / **20**: 115092-36-9 / **21** (Isomer 1): 115224-78-7 / **21** (Isomer 2): 115224-80-1 / **22** (Isomer 1): 108450-69-7 / **22** (Isomer 2): 108414-57-9 / 22a: 115092-44-9 / 22b: 115092-45-0 / 23a (Isomer 108339-80-6 / 23a (Isomer 2): 108392-71-8 / 23b (Isomer 1): 108318-44-1 / 23b (Isomer 2): 108391-85-1 / 24 (Isomer 1): 115160- $\begin{array}{l} \text{(Isomer 2): } 115224-81-2 \ / 24 \ (\text{Isomer 3): } 115224-82-3 \ / 24 \ (\text{Isomer 4): } 115224-83-4 \ / 25: \ 98759-88-7 \ / \ (pR,R)-26: \ 115224-79-8 \ / \ (pR,S)-26: \ 115140-66-4 \ / \ 27: \ 98199-94-1 \ / \ 28 \ (o-o \ exo): \ 115117-05-0 \ / \ 28 \ (o-o \ exo): \ 115183-45-4 \ / \ 29 \ (o-o \ exo): \ 115117-09-4 \ / \ 29 \ (o-o \ exo): \ 115017-0 \ / \ 29 \ (o-o \ exo): \ 115017-0 \ / \ 29 \ (o-o \ exo): \ 115017-0 \ / \ 29 \ (o-o \ exo): \ 115017-0 \ / \ 29 \ (o-o \ exo): \ 115017-0 \ / \ 29 \ (o-o \ exo): \ 115017-0 \ / \ 29 \ (o-o \ exo): \ 20 \ / \ 20 \ (o-o \ exo): \ 20 \ / \ 20 \ (o-o \ exo): \ 20 \ / \ 20 \ (o-o \ exo): \ 20 \ / \ 20 \ (o-o \ exo): \ 20 \ / \ 20 \ (o-o \ exo): \ 20 \ / \ 20 \ (o-o \ exo): \ 20 \ / \ 20 \ (o-o \ exo): \ 20 \ / \ 20 \ (o-o \ exo): \ 20 \ / \ 20 \ (o-o \ exo): \ 20 \ / \ 20 \ (o-o \ exo): \ 20 \ / \ 20 \ (o-o \ exo): \ 20 \ / \ 20 \ / \ 20 \ (o-o \ exo): \ 20 \ / \ 20 \ / \ 20 \ (o-o \ exo): \ 20 \ / \ 20 \ / \ 20 \ (o-o \ exo): \ 20 \ / \ 20 \ / \ 20 \ (o-o \ exo): \ 20 \ / \ 20 \ / \ 20 \ / \ 20 \ / \ 20 \ / \ 20 \ / \ 20 \ / \ 20 \ / \ 20 \ / \ 20 \ / \ 20 \ / \ 20 \ / \ 20 \ / \ 20 \ / \ 20 \ / \ 20 \ / \ 20 \ / \ 20 \ / \ 20 \ / \ 20$ (o'-o' endo): 115183-47-6 / **29** (p-p exo): 115117-10-7 / **29** (p-p endo): 115183-46-5 / **30** (Isomer 1): 111464-96-1 / **30** (Isomer 2): 111349- $\begin{array}{l} 11363-30-3 & (1501161-1) \\ 39-4 & / 30 \text{ A}\text{S}\text{ 115092-48-3} & / 30 \text{ A}\text{B}\text{ 115092-37-0} & / dap\text{; 78-90-0} \\ meso-cis-1,2-dach\text{; 1436-59-5} & / (\pm)-trans-1,2-dach\text{; 41013-43-8} \\ meso-cis-1,3-dach\text{; 26772-34-9} & / (\pm)-trans-1,3-dach\text{; 115092-57-4} \\ V(CO)_6\text{; 14024-00-1} & / [(1,2-\eta^5-C_5H_3(\text{Me})s-\text{Bu})_2V(CO)_2]^+[V(CO)_6]^- \\ 111349-36-1 & / Cp_2V_2(CO)_5\text{; 41699-43-8} & / [tolV(CO)_4]^+[V(CO)_6]^- \\ 84525-98-4 & / TpC(CO)_5\text{; 12083-16-8} & / CpV(CO)_3PPh_3\text{; 12213-09-1} \\ CPV(CO)_6 & - 12008 & 0.42 & / CH_6 & (metull)_272347_54.3 & / CH_6 & (metull)_272347_54.3 \\ \end{array}$ CpV(CO)₄: 12108-04-2 / C_5H_5 (butyl): 78347-54-3 / C_5H_5 (pentyl): 108332-60-1 / C_5H_5 (hexyl): 108332-62-3 / C_5H_5 (heptyl): 108332-63-4 / C₅H₅ (octyl): 108332-66-7 / C₅H₅ (decyl): 115092-53-0 / C₅H₅ (dodecyl): 115092-54-1 / CsH5 (cetyl): 115092-55-2 / CsH5 (octadecyl): 115092-56-3 / C5H5 (trityľ): 62790-43-6 / C5H4Me (Cy): 102782- $30-9 / C_5H_4Me$ (s-Bu): 115092-60-9 / C₅H₄Me (cetyl): 102782-31-0 / $C_{5}H_{4}Cy_{2}$: 115092-61-0 / $C_{5}H_{4}$ (s-Bu)₂: 115092-62-1 / ($C_{5}H_{5}$)₂CH₂: 79249-50-6 / C_5H_5Me : 26519-91-5 / $C_5H_4Me_2$: 77208-25-4 / C_5H_3 Me₃: 72347-62-7 / $C_5H_2Me_4$: 79042-55-0 / C_5HMe_5 : 4045-44-7 / C_5HMe_4 Et: 57693-77-3 / C_5H_3n -Pr: 27288-07-9 / C_5H_5Cy : 52274-31-4 / n-C₄H₉Br: 109-65-9 / n-C₅H₁₁Cl: 543-59-9 / n-C₆H₁₃Br: 111-25-1 / n-C₇H₁₅Br: 629-04-9 / n-C₈H₁₇Br: 111-83-1 / n-C₁₀H₂₁Br: 112-29-8 / $n-C_{12}H_{22}CI: 112-52-7 / <math>n-C_{16}H_{17}BI: 111-65-1 / n-C_{18}H_{17}II: 629 93-6 / (C_6H_3)_3CCI: 76-83-5 / C_6H_{13}II: 544-77-4 / <math>n-C_{18}H_{37}II: 629-$ 93-6 / (C_6H_3)_3CCI: 76-83-5 / C_6H_{11}BI: 108-85-0 / $s-C_4H_9BI:$ 78-76-2 / CH₂Cl₂: 75-09-2 / (α -pyridyl) CH = NCH(Me)Ph: 51705-23-8 / CpV(CO)₃THF: 73557-90-1 / NaC₅H₄C(CO)Me: 78207-70-2 / [Et₄N][V(CO)₆]: 13985-78-9 / C₅H₅V(O₂CCCl₃): 11509-64 / (n^{5}_{2} 1 - B) / indexviW(CO) + 151172 08 2 / ($n-C_{10}$ CC) - 402 46-1 / (η⁵-1-n-Bu-1-indenyl)V(CO)₄: 115117-08-3 / (CF₃CÕ)₂O: 407- $C_{H_3}V(O_2CCF_3)_2$; 33439-05-3 / [(1,3-n⁵-C_{H_3}(Me)s-Bu)_2-]⁺[V(CO)₆]⁻: 111349-38-3 / [(1,2-n⁵-C_{3}H_3(Me)Cy)_2-]⁺ 25-0 $\begin{array}{l} V(CO)_2]^+[V(CO)_6]^-: 111349-38-3 \ / \ [(1,2-\eta^3-C_5H_3(Me)Cy)_2-V(CO)_2][V(CO)_6]: 115092-50-7 \ / \ [(1,2-\eta^3-C_5H_3(Me)Cy)_2V(CO)_2]-V(CO)_6]: 115092-52-9 \ / \ V: 7440-62-2 \ / \ 1-n-Butylinden: 40650-29-1 \ / \ Azulen: 275-51-4 \ / \ Guajazulen: 489-84-9 \ / \ Inden: 95-13-6 \ / \ (1,2-\eta^3-C_5H_3(Me)Cy)_2V(CO)_2]-V(CO)_2 \ - \ (1,2-\eta^3-C_5H_3(Me)Cy)_2V(CO)_2]-V(CO)_6]: 115092-52-9 \ / \ V: 7440-62-2 \ / \ 1-n-Butylinden: 40650-29-1 \ / \ Azulen: 275-51-4 \ / \ Guajazulen: 489-84-9 \ / \ Inden: 95-13-6 \ / \ (1,2-\eta^3-C_5H_3(Me)Cy)_2V(CO)_2)-V(CO)_2 \ - \ (1,2-\eta^3-C_5H_3(Me)Cy)_2V(CO)_2]-V(CO)_6]: 115092-52-9 \ / \ V: 7440-62-2 \ / \ 1-n-Butylinden: 40650-29-1 \ / \ Azulen: 275-51-4 \ / \ Guajazulen: 489-84-9 \ / \ Inden: 95-13-6 \ / \ (1,2-\eta^3-C_5H_3(Me)Cy)_2V(CO)_2)-V(CO)_2 \ - \ (1,2-\eta^3-C_5H_3(Me)Cy)_2V(CO)_2 \ - \ (1,2-\eta^3-C_5H_3(Me)Cy)_2V(CO)_2)-V(CO)_2 \ - \ (1,2-\eta^3-C_5H_3(Me)Cy)_2V(CO)_2 \ - \ (1,2-\eta^3-C_5H_3(Me)Cy)_2V(CO)_2V$ 1-Brominden: 61083-09-8 / 1-s-Butylinden: 66325-83-5 / 9-Bromfluoren: 1940-57-4 / Natriumcyclopentadienid: 4984-82-1 / Natriummethylcyclopentadienid: 55562-83-9 / Natriumcyclohexylcyclopentadienid: 115092-58-5 / Natrium-s-butylcyclopentadienid: 115092-59-6

- ¹⁾ J. R. Durig, A. L. Marston, R. B. King, L. W. Houk, J. Organomet. Chem. 16 (1969) 425.

- ¹⁰ W. Strohmeier, F.-J. Müller, *Chem. Ber.* **100** (1967) 2812. ³⁾ E. O. Fischer, R. J. Schneider, *Chem. Ber.* **103** (1970) 3684. ⁴⁾ ^{4a)} W. A. Herrmann, J. Plank, *Chem. Ber.* **112** (1979) 392. ^{4b)} L. N. Lewis, K. G. Caulton, Inorg. Chem. 19 (1980) 1840.

- ^{5) 5a)} A. Woijcicki, F. Basolo, J. Inorg. Nucl. Chem. 17 (1961) 77. –
 ^{5b)} G. C. Faber, R. J. Angelici, Inorg. Chem. 9 (1970) 1586. –
 ^{5c)} D. G. Alway, K. W. Barnett, Inorg. Chem. 19 (1980) 779.
- ⁶⁾ M. Hoch, A. Duch, D. Rehder, Inorg. Chem. 25 (1986) 2907.
- ⁷⁾ D. Rehder, M. Hoch, M. Link, Organometallics 7 (1988) 233.
- ⁸⁾ K. Hoffmann, E. Weiss, J. Organomet. Chem. 131 (1977) 273. ⁹⁾ D. Wenke, D. Rehder, J. Organomet. Chem. 273 (1984) C43.
- ¹⁰⁾ D. Rehder, D. Wenke, J. Organomet. Chem., im Druck.
- ¹¹⁾ W. Herrmann, W. Kalcher, *Chem. Ber.* **115** (1982) 3886. ¹²⁾ E. O. Fischer, W. Hafner, Z. Naturforsch., Teil B, **9** (1954) 503.
- ¹³⁾ E. O. Fischer, K. Plesske, Chem. Ber. 93 (1956) 1006.
- ¹⁴⁾ K. Alder, J. Arche, Chem. Ber. 95 (1962) 503.
- ¹⁵⁾ E. O. Fischer, M. v. Förster, C. G. Kreiter, K. E. Schwarzhans,
- J. Organomet. Chem. 7 (1967) 113. ¹⁶⁾ R. Riemenschneider, O. Goering, H. Krüger, Mh. Chem. 92
- (1960) 307. ¹⁷⁾ G. M. Larin, V. T. Kallinikov, G. G. Alksandrov, Yu. T. Struch-
- kov, A. A. Pasynskii, N. E. Kolobova, J. Organomet. Chem. 27 (1971) 53.
- ¹⁸⁾ Ethyl Corp., US Pat. 2916503 (1959) [Chem. Abstr. 54 (1960) 56931.
- 19) Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-52960, des Autors und des Zeitschriftenzitats angefordert werden.
- ²⁰⁾ J. B. Wilford, A. Whitla, H. M. Powell, J. Organomet. Chem. 8
- ⁽¹⁾ Deuten, J. Organomet. Chem. 220 (1981) 45.
- ²²⁾ J. Schiemann, E. Weiss, J. Organomet. Chem. 255 (1983) 179.
 ²³⁾ E. Haslinger, W. Robien, K. Schlögl, W. Weissensteiner, J. Or-
- ²⁴⁾ E. Häsinger, W. Robien, K. Schlögi, W. Weissensteiner, J. Organomet. Chem. 218 (1981) C11.
 ²⁴⁾ P. G. Gassman, W. H. Campbell, D. W. Macomber, Organometallics 3 (1984) 385. ^{24b)} A. Dormond, M. Fauconet, J. C. Leblanc, C. Moise, Polyhedron 3 (1984) 897.
 ²⁵⁾ ^{25a)} A. F. Masters, R. T. C. Brownlee, M. J. O'Connor, A. G. Wedd, Inorg. Chem. 20 (1981) 4183. ^{25b)} R. T. C. Brownlee, M. J. O'Connor, B. P. Sherhan, A. G. Wedd, Aust. J. Chem. 39 (1986) 931 (1986) 931.

- ²⁶⁾ D. Rehder, J. Magn. Reson. 28 (1980) 419.
- ²⁷⁾ C. J. Jameson, D. Rehder, M. Hoch, J. Am. Chem. Soc. 109 (1987) 2589
- ²⁸⁾ H. Brunner, W. A. Herrmann, Z. Naturforsch., Teil B, 28 (1973) 608
- ²⁹⁾ H. Brunner, P. Beier, E. Frauendorfer, M. Muschiol, D. K. Rastogi, J. Wachter, M. Minelli, J. H. Enemark, Inorg. Chim. Acta 96 (1985) L5.

- ³⁰ M. Hoch, D. Rehder, *Inorg. Chim. Acta* 115 (1986) L23.
 ³¹⁾ M. Hoch, D. Rehder, *J. Organomet. Chem.* 288 (1985) C25.
 ³²⁾ ^{32a)} D. Rehder, *Magn. Reson. Rev.* 9 (1984) 125. ^{32b)} D. Rehder in Multinuclear NMR (J. Mason, Ed.), ch. 19, Plenum Publ., New York 1987.
- ³³ J. Mason, Chem. Rev. 87 (1987) 1299. ³⁴⁾ J. W. Akitt, W. S. McDonald, J. Magn. Reson. 58 (1984) 401.

- ³⁵⁾ G. Palyi, R. B. King, *Inorg. Chim. Acta* 15 (1975) L23.
 ³⁶⁾ R. B. King, *J. Am. Chem. Soc.* 90 (1968) 1412 und 1417.
 ³⁷⁾ R. M. Kowalewski, D. O. Kipp, K. J. Stauffer, P. N. Swepston, F. Basolo, *Inorg. Chem.* 24 (1985) 3750.
 ³⁸⁾ F. Deicher, Discretation, Univ. München 1962.
- ³⁸⁾ E. Priebe, Dissertation, Univ. München, 1962.
- ³⁹⁾ P. H. Bird, M. A. Churchill, Inorg. Chem. 7 (1968) 349.
- M. R. Churchill, R. A. Lashewycz, F. J. Rotella, *Inorg. Chem.* 16 (1977) 265.
- ⁴¹⁾ R. P. M. Werner, S. A. Manastyrskyj, J. Am. Chem. Soc. 83 (1961) 2023.
- ⁴²⁾ F. Calderazzo, Inorg. Chem. 4 (1965) 223.
- ⁴³⁾ A. Werner, A. Grob, Ber. Dtsch. Chem. Ges. 37 (1904) 2895.
 ⁴⁴⁾ Ng. Ph. Buu-Hoï, Liebigs Ann. Chem. 556 (1944) 1.
- ⁴⁵⁾ P. Main, S. E. Hull, L. Lessinger, G. Germain, J. Declerq, M. M. Woolfson, MULTAN 78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Dif-fraction Data, University of York (England) and Louvain-la-Neuve (Belgien).
- ⁴⁶⁾ G. M. Sheldrick, SHELX-84. Program for Crystal Structure Solution, Universität Göttingen. ⁴⁷⁾ E. Keller, SCHAKAL. Ein Fortran-Programm für die graphische
- Darstellung von Molekülmodellen, Chem. Unserer Zeit 14 (1980) 56.

[48/88]